Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338474

RESUMO

Biological activities of six under-utilized medicinal leafy vegetable plants indigenous to Africa, i.e., Basella alba, Crassocephalum rubens, Gnetum africanum, Launaea taraxacifolia, Solanecio biafrae, and Solanum macrocarpon, were investigated via two independent techniques. The total phenolic content (TPC) was determined, and six microtiter plate assays were applied after extraction and fractionation. Three were antioxidant in vitro assays, i.e., ferric reducing antioxidant power (FRAP), cupric reduction antioxidant capacity (CUPRAC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, and the others were enzyme (acetylcholinesterase, butyrylcholinesterase, and tyrosinase) inhibition assays. The highest TPC and antioxidant activity from all the methods were obtained from polar and medium polar fractions of C. rubens, S. biafrae, and S. macrocarpon. The highest acetyl- and butyrylcholinesterase inhibition was exhibited by polar fractions of S. biafrae, C. rubens, and L. taraxacifolia, the latter comparable to galantamine. The highest tyrosinase inhibition was observed in the n-butanol fraction of C. rubens and ethyl acetate fraction of S. biafrae. In vitro assay results of the different extracts and fractions were mostly in agreement with the bioactivity profiling via high-performance thin-layer chromatography-multi-imaging-effect-directed analysis, exploiting nine different planar assays. Several separated compounds of the plant extracts showed antioxidant, α-glucosidase, α-amylase, acetyl- and butyrylcholinesterase-inhibiting, Gram-positive/-negative antimicrobial, cytotoxic, and genotoxic activities. A prominent apolar bioactive compound zone was tentatively assigned to fatty acids, in particular linolenic acid, via electrospray ionization high-resolution mass spectrometry. The detected antioxidant, antimicrobial, antidiabetic, anticholinesterase, cytotoxic, and genotoxic potentials of these vegetable plants, in particular C. rubens, S. biafrae, and S. macrocarpon, may validate some of their ethnomedicinal uses.


Assuntos
Anti-Infecciosos , Plantas Medicinais , Antioxidantes/química , Butirilcolinesterase , Verduras , Cromatografia em Camada Delgada , Acetilcolinesterase , Monofenol Mono-Oxigenase , Plantas Medicinais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/análise
2.
Antioxidants (Basel) ; 12(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136240

RESUMO

Commercially available tea extracts for dietary supplements and nutraceuticals are standardized to characteristic components of Camellia sinensis L., such as epigallocatechin gallate (EGCG) and total catechins or polyphenols. However, since most commercial tea extracts are highly concentrated into only one molecule such as EGCG, the comparatively less stable catechin, the oxidative stability of the extract during the 24-month shelf life was questioned. It was hypothesized that the overall oxidative stability is reduced for highly purified/concentrated tea extracts due to the absence of other natural antioxidants stabilizing the complex mixture. Via liquid chromatographic analysis, the individual chromatographic profiles of 30 commercial white, green, and black tea extracts were evaluated and compared regarding oxidative stability and functional properties. The contents of bioactive flavan-3-ols, theaflavins, and methylxanthines differed much from what was claimed by the suppliers. At the end of the product shelf life, most of the commercial green and black tea extracts showed a decrease in the flavan-3-ol content, the main bioactive components of tea. A high EGCG content to the detriment of other possibly stabilizing flavan-3-ols or antioxidants in tea was found to explain the lower oxidative stability of such tea extract products. A natural overall composition of molecular structures was found to be superior to a strong enrichment in just one molecule.

3.
Antioxidants (Basel) ; 12(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36830034

RESUMO

During the development of novel, standardized peppermint extracts targeting functional applications, it is critical to adequately characterize raw material plant sources to assure quality and consistency of the end-product. This study aimed to characterize existing and proprietary, newly bred varieties of peppermint and their corresponding aqueous extract products. Taxonomy was confirmed through genetic authenticity assessment. Non-target effect-directed profiling was developed using high-performance thin-layer chromatography-multi-imaging-effect-directed assays (HPTLC-UV/Vis/FLD-EDA). Results demonstrated substantial differences in compounds associated with functional attributes, notably antioxidant potential, between the peppermint samples. Further chemical analysis by high-performance liquid chromatography-photodiode array/mass spectrometry detection (HPLC-PDA/MS) and headspace solid-phase microextraction-gas chromatography-flame ionization/MS detection (headspace SPME-GC-FID/MS) confirmed compositional differences. A broad variability in the contents of flavonoids and volatiles was observed. The peppermint samples were further screened for their antioxidant potential using the Caenorhabditis elegans model, and the results indicated concordance with observed content differences of the identified functional compounds. These results documented variability among raw materials of peppermint leaves, which can yield highly variable extract products that may result in differing effects on functional targets in vivo. Hence, product standardization via effect-directed profiles is proposed as an appropriate tool.

4.
Molecules ; 27(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684478

RESUMO

Ethiopian honey is used not only as food but also for treatment in traditional medicine. For its valorization, bioactive compounds were analyzed in nine types of monofloral Ethiopian honey. Therefore, a non-target effect-directed profiling was developed via high-performance thin-layer chromatography combined with multi-imaging and planar effect-directed assays. Characteristic bioactivity profiles of the different honeys were determined in terms of antibacterial, free-radical scavenging, and various enzyme inhibitory activities. Honeys from Hypoestes spp. and Leucas abyssinica showed low activity in all assays. In contrast, others from Acacia spp., Becium grandiflorum, Croton macrostachyus, Eucalyptus globulus, Schefflera abyssinica, Vernonia amygdalina, and Coffea arabica showed more intense activity profiles, but these differed depending on the assay. In particular, the radical scavenging activity of Croton macrostachyus and Coffea arabica honeys, the acetylcholinesterase-inhibiting activity of Eucalyptus globulus and Coffea arabica honeys, and the antibacterial activity of Schefflera abyssinica honey are highlighted. Bioactive compounds of interest were further characterized by high-resolution mass spectrometry. Identifying differences in bioactivity between mono-floral honey types affects quality designation and branding. Effect-directed profiling provides new insights that are valuable for food science and nutrition as well as for the market, and contributes to honey differentiation, categorization, and authentication.


Assuntos
Araliaceae , Coffea , Eucalyptus , Mel , Acetilcolinesterase , Antibacterianos/farmacologia , Cromatografia em Camada Delgada/métodos , Etiópia , Mel/análise , Espectrometria de Massas
5.
J Chromatogr A ; 1673: 463057, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35477072

RESUMO

Aerial parts of the rare species Salvia aegyptiaca L. and S. verbenaca L. were collected from arid habitats in southern Tunisia. Their polar (ethanol-water) and mid-polar (ethyl acetate) extracts were analyzed non-targeted via a developed high-performance thin-layer chromatography profiling hyphenated with 12 effect-directed assays and 8 different physico-chemical detections. Bioactive compound zones were observed with inhibiting activities on α-glucosidase, ß-glucosidase, ß-glucuronidase, acetylcholinesterase, butyrylcholinesterase and tyrosinase, with radical scavenging (antioxidative) effects, and with activities against Gram-negative and Gram-positive bacteria. The effect-directed profile patterns showed common bioactive zones for different collection sites of the same species and distinct differences between species. Such characteristic profiles can be used to prove authenticity. Genotoxic, estrogen-like and androgen-like compounds were not detected even at higher amounts applied (for extracts from 1.6 mg sample). In the physico-chemical profiling, further organic substances were selectively detected, which highlighted the complexity of the multi-component mixture. The Tunisian sage profiles were further compared to the frequently used S. folium L. and S. officinalis L. leaves, and to reference mixtures containing phenolic acids and tanshinones. Selected bioactive zones in the S. verbenaca extracts were characterized by high-resolution mass spectrometry, and some mass signals were attributed to a caffeic acid derivative and to oleanolic and ursolic acids. Such effect-directed non-target profiling allows straightforward comparison not only of sage but of plant extracts in general.


Assuntos
Salvia , Acetilcolinesterase/química , Antioxidantes/análise , Butirilcolinesterase/análise , Cromatografia em Camada Delgada/métodos , Extratos Vegetais/química , Folhas de Planta/química
6.
Front Pharmacol ; 12: 755941, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955829

RESUMO

The beneficial effects of plant-rich diets and traditional medicines are increasingly recognized in the treatment of civilization diseases due to the abundance and diversity of bioactive substances therein. However, the important active portion of natural food or plant-based medicine is presently not under control. Hence, a paradigm shift from quality control based on marker compounds to effect-directed profiling is postulated. We investigated 68 powdered plant extracts (botanicals) which are added to food products in food industry. Among them are many plants that are used as traditional medicines, herbs and spices. A generic strategy was developed to evaluate the bioactivity profile of each botanical as completely as possible and to straightforwardly assign the most potent bioactive compounds. It is an 8-dimensional hyphenation of normal-phase high-performance thin-layer chromatography with multi-imaging by ultraviolet, visible and fluorescence light detection as well as effect-directed assay and heart-cut of the bioactive zone to orthogonal reversed-phase high-performance liquid chromato-graphy-photodiode array detection-heated electrospray ionization mass spectrometry. In the non-target, effect-directed screening via 16 different on-surface assays, we tentatively assigned more than 60 important bioactive compounds in the studied botanicals. These were antibacterials, estrogens, antiestrogens, androgens, and antiandrogens, as well as acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, ß-glucosidase, ß-glucuronidase, and tyrosinase inhibitors, which were on-surface heart-cut eluted from the bioautogram or enzyme inhibition autogram to the next dimension for further targeted characterization. This biological-physicochemical hyphenation is able to detect and control active mechanisms of traditional medicines or botanicals as well as the essentials of plant-based food. The array of 1,292 profiles (68 samples × 19 detections) showed the versatile bioactivity potential of natural food. It reveals how efficiently and powerful our natural food contributes to our homeostasis.

7.
Molecules ; 26(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800407

RESUMO

An effect-directed profiling method was developed to investigate 17 different fortified plant extracts for potential benefits. Six planar effect-directed assays were piezoelectrically sprayed on the samples separated side-by-side by high-performance thin-layer chromatography. Multipotent compounds with antibacterial, α-glucosidase, ß-glucosidase, AChE, tyrosinase and/or ß-glucuronidase-inhibiting effects were detected in most fortified plant extracts. A comparatively high level of antimicrobial activity was observed for Eleutherococcus, hops, grape pomace, passiflora, rosemary and Eschscholzia. Except in red vine, black radish and horse tail, strong enzyme inhibiting compounds were also detected. Most plants with anti-α-glucosidase activity also inhibited ß-glucosidase. Green tea, lemon balm and rosemary were identified as multipotent plants. Their multipotent compound zones were characterized by high-resolution mass spectrometry to be catechins, rosmarinic acid, chlorogenic acid and gallic acid. The results pointed to antibacterial and enzymatic effects that were not yet known for plants such as Eleutherococcus and for compounds such as cynaratriol and caffeine. The nontarget effect-directed profiling with multi-imaging is of high benefit for routine inspections, as it provides comprehensive information on the quality and safety of the plant extracts with respect to the global production chain. In this study, it not only confirmed what was expected, but also identified multipotent plants and compounds, and revealed new bioactivity effects.


Assuntos
Análise de Alimentos/métodos , Extratos Vegetais/química , Antibacterianos/farmacologia , Bioensaio/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia em Camada Delgada/métodos , Inibidores Enzimáticos , Alimentos , Espectrometria de Massas/métodos
8.
Antioxidants (Basel) ; 10(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467615

RESUMO

The antioxidative activity of Camelia sinensis tea and especially powdered tea extracts on the market, among others used as added value in functional foods, can considerably vary due to not only natural variance, but also adulteration and falsification. Thus, an effect-directed profiling was developed to prove the functional effects or health-promoting claims. It took 3-12 min per sample, depending on the assay incubation time, for 21 separations in parallel. Used as a fast product quality control, it can detect known and unknown bioactive compounds. Twenty tea extracts and a reference mixture of 11-bioactive compounds were investigated in parallel under the same chromatographic conditions by a newly developed reversed phase high-performance thin-layer chromatographic method. In eight planar on-surface assays, effect-directed tea profiles were revealed. Catechins and theaflavins turned out to be not only highly active, but also multi-potent compounds, able to act in a broad range of metabolic pathways. The flavan-3-ols acted as radical scavengers (DPPH∙ assay), antibacterials against Gram-positive Bacillus subtilis bacteria, and inhibitors of tyrosinase, α-glucosidase, ß-glucosidase, and acetylcholinesterase. Further effects against Gram-negative Aliivibrio fischeri bacteria and ß-glucuronidase were assigned to other components in the powdered tea extracts. According to their specifications, the activity responses of the powdered tea extracts were higher than in mere leaf extracts of green, white and black tea. The multi-imaging and effect-directed profiling was not only able to identify known functional food ingredients, but also to detect unknown bioactive compounds (including bioactive contaminants, residues or adulterations).

9.
Anal Bioanal Chem ; 412(24): 6431-6448, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32328691

RESUMO

Food products and botanicals on the global market need to be investigated in a more comprehensive way to detect effects, falsifications or adulterations. This is especially true for such ones containing Stevia leaves, Stevia extracts, or steviol glycosides. A multi-imaging profiling was developed exploiting hydrophilic interaction liquid chromatography (HILIC). A minimalistic sample preparation, different mixtures of acetonitrile and water/buffer on the silica gel phase as well as derivatization reagents and optional hyphenation with high-resolution mass spectrometry were exploited. The hydrophilic interaction high-performance thin-layer chromatography (HI-HPTLC) development took 10 min for 48 analyses. It was used to screen Stevia leaf extracts and 20 different food products. For the first time, the biological and biochemical profiling of Stevia leaf products by HI-HPTLC-UV/Vis/FLD-assay pointed to 19 different bioactive compound bands found in the more natural multicomponent Stevia leaf extracts, whereas most of these activities were not existent for the steviol glycosides. The chemically isolated, purified, and EU-regulated steviol glycosides ease risk assessment and food product development. However, multipotent botanicals may have subtle impact on homeostasis via several metabolic pathways, providing benefits for the consumer's health. Analyzed side by side by means of the effect-directed profiling, their individual activity profiles were visualized as image and individual substances of importance were pointed out. Multi-imaging (comprehensive detection) plus non-targeted bioprofiling (focus on known and unknown bioactivity) allows for a fast detection of questionable product changes that occur along the global food chain and are particularly related to food safety. Graphical abstract.


Assuntos
Cromatografia em Camada Delgada/métodos , Diterpenos do Tipo Caurano/análise , Análise de Alimentos/métodos , Glucosídeos/análise , Stevia/química , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...